Specificity of color connectivity between primate V1 and V2.
نویسندگان
چکیده
To examine the functional interactions between the color and form pathways in the primate visual cortex, we have examined the functional connectivity between pairs of color oriented and nonoriented V1 and V2 neurons in Macaque monkeys. Optical imaging maps for color selectivity, orientation preference, and ocular dominance were used to identify specific functional compartments within V1 and V2 (blobs and thin stripes). These sites then were targeted with multiple electrodes, single neurons isolated, and their receptive fields characterized for orientation selectivity and color selectivity. Functional interactions between pairs of V1 and V2 neurons were inferred by cross-correlation analysis of spike firing. Three types of color interactions were studied: nonoriented V1/nonoriented V2 cell pairs, nonoriented V1/oriented V2 cell pairs, and oriented V1/nonoriented V2 cell pairs. In general, interactions between V1 and V2 neurons are highly dependent on color matching. Different cell pairs exhibited differing dependencies on spatial overlap. Interactions between nonoriented color cells in V1 and V2 are dependent on color matching but not on receptive field overlap, suggesting a role for these interactions in coding of color surfaces. In contrast, interactions between nonoriented V1 and oriented V2 color cells exhibit a strong dependency on receptive field overlap, suggesting a separate pathway for processing of color contour information. Yet another pattern of connectivity was observed between oriented V1 and nonoriented V2 cells; these cells exhibited interactions only when receptive fields were far apart and failed to interact when spatially overlapped. Such interactions may underlie the induction of color and brightness percepts from border contrasts. Our findings thus suggest the presence of separate color pathways between V1 and V2, each with differing patterns of convergence and divergence and distinct roles in color and form vision.
منابع مشابه
Neural correlates and effective connectivity of subjective colors during the Benham's top illusion: a functional MRI study.
Benham's top is a rotating black-and-white pattern that fuses to form concentric rings of different colors (Prevost-Fechner-Benham subjective colors [SCs]). The underlying mechanism has been explained as resulting from local retinal cell interactions, yet the cortical processing of this illusion is largely unknown. We used rapid event-related functional magnetic resonance imaging to investigate...
متن کاملA hierarchy of the functional organization for color, form and disparity in primate visual area V2
By combining optical imaging, single unit electrophysiology and cytochrome oxidase (CO) histology, we sought to reveal in greater detail the functional organization within the CO stripes of visual area V2 of primates. To visualize the disparity selective regions of V2, the imaging of binocular interaction was employed. These imaging maps guided single unit penetrations that then revealed a colu...
متن کاملFunctional organization of color domains in V1 and V2 of macaque monkey revealed by optical imaging.
Areas V1 and V2 of Macaque monkey visual cortex are characterized by unique cytochrome-oxidase (CO)-staining patterns. Initial electrophysiological studies associated CO blobs in V1 with processing of surface properties such as color and brightness and the interblobs with contour information processing. However, many subsequent studies showed controversial results, some supporting this proposal...
متن کاملHierarchy of Hue Maps in the Primate Visual Cortex
Many stimulus attributes are represented in the cortex in the form of a map, such as the retinotopic map in the visual cortex and the frequency map in the auditory cortex where nearby cortical locations are associated with similar values of a given stimulus or action attribute. Given the computational advantage of maps for processing information,1 it is likely that a cortical region with a mapp...
متن کاملLateral Connectivity and Contextual Interactions in Macaque Primary Visual Cortex
Two components of cortical circuits could mediate contour integration in primary visual cortex (V1): intrinsic horizontal connections and feedback from higher cortical areas. To distinguish between these, we combined functional mapping with a new technique for labeling axons, a recombinant adenovirus bearing the gene for green fluorescent protein (GFP), to determine the extent, density, and ori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 82 5 شماره
صفحات -
تاریخ انتشار 1999